109,641 research outputs found

    Technique for measuring time-base errors of magnetic instrumentation recorders/reproducers

    Get PDF
    Time-base error analysis of magnetically recorded and played back digital data using tape flutter spectral density and amplitude probability distribution measurements and rms time plot

    Axiomatic Holonomy Maps and Generalized Yang-Mills Moduli Space

    Full text link
    This article is a follow-up of ``Holonomy and Path Structures in General Relativity and Yang-Mills Theory" by Barrett, J. W. (Int.J.Theor.Phys., vol.30, No.9, 1991). Its main goal is to provide an alternative proof of this part of the reconstruction theorem which concerns the existence of a connection. A construction of connection 1-form is presented. The formula expressing the local coefficients of connection in terms of the holonomy map is obtained as an immediate consequence of that construction. Thus the derived formula coincides with that used in "On Loop Space Formulation of Gauge Theories" by Chan, H.-M., Scharbach, P. and Tsou S.T. (Ann.Phys., vol.167, 454-472, 1986). The reconstruction and representation theorems form a generalization of the fact that the pointed configuration space of the classical Yang-Mills theory is equivalent to the set of all holonomy maps. The point of this generalization is that there is a one-to-one correspondence not only between the holonomy maps and the orbits in the space of connections, but also between all maps from the loop space on MM to group GG fulfilling some axioms and all possible equivalence classes of P(M,G)P(M,G) bundles with connection, where the equivalence relation is defined by bundle isomorphism in a natural way.Comment: amslatex, 7 pages, no figure

    Modeling of secondary organic aerosol yields from laboratory chamber data

    Get PDF
    Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA) formation. Current models fall into three categories: empirical two-product (Odum), product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs) classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice
    corecore